Processing Intensive Full-Waveform Aerial Laser Scanning Matlab Jobs through Condor
Issue:
Volume 1, Issue 1, June 2013
Pages:
5-14
Received:
23 June 2013
Published:
10 August 2013
Abstract: Full-waveform aerial laser scanning is a laser system that records the entire backscattered signal of the laser pulse and stores it in the system recorder for post-processing. Capturing the complete waveform of the backscatter signal enables distinguishing between neighborhood echoes of a range smaller than the pulse length. Full-waveform has shown potential to better describe land cover features through the additional physical information it can provide alongside the standard geometric information. To fully utilize full-waveform for enhanced object recognition and feature extraction, it is essential to develop an automatic and effective routine to manage and process full-waveform datasets in a manner which requires less human effort and reduces time needed to process large laser datasets efficiently. This research tackled this problem through introducing a novel processing strategy for full-waveform data based on a developed pulse detection methodto run through Matlab environment. The solution adopted a grid computing Condor-based approach, which showed significant potential to reduce the time and effort needed to process large datasets such as full-waveform aerial laser scanning to more than 300% in specific conditions.
Abstract: Full-waveform aerial laser scanning is a laser system that records the entire backscattered signal of the laser pulse and stores it in the system recorder for post-processing. Capturing the complete waveform of the backscatter signal enables distinguishing between neighborhood echoes of a range smaller than the pulse length. Full-waveform has shown...
Show More